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1. INTRODUCTION

When Schr€odinger1 derived the now-famous equation bearing
his name in 1925, new possibilities emerged for the theoretical
and computational prediction of energies and properties of
chemical systems and processes. In the 1940s, Eyring, Walter,
and Kimball2 wrote in their introductory book on quantum
chemistry that problems in chemistry had been converted by
quantum mechanics into problems in applied mathematics. In
truth, it would take a long time for advances in both theory and
computation to enable accurate predictions of quantum chemi-
cal systems. In the 1950s and 1960s, Roothan,3 Pople,4 and
others solved the Hartree�Fock equations for mean-field
energies and properties of atoms and molecules, while in the
1970s and 1980s more sophisticated methods, the coupled
cluster method5 and density functional theory,6 were designed
for the prediction of correlation energies, that is, the differences
between the energies from the Hartree�Fock equations and
the energies of the many-electron Schr€odinger equation. The last
10 years have seen growing interest in the development of
electronic structure methods that can treat moderate-to-strong
electron correlation, often critical to connecting theoretical
predictions and experiments. In this work, we review recent
advances in one of these new approaches to the study of electron
correlation, the direct calculation of the two-electron reduced
density matrix (2-RDM).7

In 1951 at a summer conference at Chalk River, the mathe-
matician John Coleman8 explained to a group of physicists that
the many-electron problem might be reducible to only two
electrons. Because electrons are indistinguishable with only pairwise
interactions, Coleman recognized that the energy of any atom or
molecule can be expressed as a linear functional of the 2-RDM.7,8

This formulation suggested the tantalizing possibility of employ-
ing the 2-RDM rather than the many-electron wave function to
compute the ground-state energy of an atom or molecule. In
1955, Mayer9 and Lowdin10 published similar 2-RDM-based
expressions, with Mayer performing a variational calculation. It
was soon recognized by Coleman,8,11 Tredgold,12 and others,
however, that the variational 2-RDM calculations yielded en-
ergies that were much too low. The two-electron density matrix
had to be constrained to represent a many-electron (orN-electron)
density matrix (or wave function). Coleman in 1963 called these
constraintsN-representability conditions,11 and the search for such
constraints became known as the N-representability problem.
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For 40 years, the N-representability problem prevented the
calculation of the 2-RDM without the many-electron wave
function for all but the simplest four-electron systems.13�15

In the 1990s, computation of the 2-RDM without the many-
electron wave function was achieved by Valdemoro and co-
workers,16�18 Nakatsuji and Yasuda,19,20 and the author21�23

through an iterative solution of the contracted Schr€odinger equa-
tion. Research on the contracted Schr€odinger equation had a
significant impact on the further development of the variational
2-RDM theory because it led to the recognition that higher-
particle RDMs must be invoked for achieving accurate energies
and properties in the presence of strong electron correlation.
Since then, two complementary approaches to the direct calcula-
tion of the 2-RDM have emerged: (i) solution of the contracted
Schr€odinger equation16�38 or its anti-Hermitian part39�55 and
(ii) variational minimization of the ground-state energy as a
functional of the 2-RDM.13�15,56�91 Furthermore, in class ii of
variational calculations, two approaches to constraining the 2-RDM
can be distinguished: (a) the variational 2-RDM methods in
which the 2-RDM is constrained by necessaryN-representability
conditions known as positivity conditions13�15,56�81,92�98 and
(b) the parametric variational 2-RDM methods in which the
2-RDM is constrained to be nearly N-representable by its
parametrization.83�91,99 The collection of these methods has realized
a quantum chemistry and physics for molecular systems in which the
2-RDM rather than the many-electron wave function is the basic
variable. These 2-RDMmethods have been applied to treat moderate
and strong correlation in a variety of problems including (i) the
conical intersections inmethylene53 andbicyclobutane, (ii) thekinetic
stability of oxywater,99 (iii) the bioluminescence of fireflies,100 (iv)
quantum phase transitions,101,102 (v) nuclear motion within and
beyond the Born�Oppenheimer approximation,38,79,103 (vi) the
metal-to-insulator transition in hydrogen chains,81 and (vii) the
growth of polyradical character with system size in acene chains80

and sheets.104 In this work, we develop and review these 2-RDM
approaches with an emphasis on their ability to treat moderate-
to-strong electron correlation in chemistry and physics.

2. CONTRACTED SCHR€oDINGER THEORY

Integration (or contraction in a matrix formulation) of the
density-matrix version of the Schr€odinger equation over all
electrons save two produces the contracted Schr€odinger equation
(CSE).16�34,36 Section 2.1 presents the CSE as well as its
Hermitian (HCSE) and anti-Hermitian (ACSE) parts. If the
RDMs in the CSE are N-representable, there is a one-to-one
mapping between solutions of the Schr€odinger equation and
solutions of the CSE. The proof of this mapping, first given by
Nakatsuji,105 is presented in second quantization21 in section 2.2.
Nonetheless, neither the CSE nor the ACSE can be solved for the
2-RDM without additional information because these equations
depend on higher RDMs. In section 2.3, we discuss the approx-
imate reconstruction of higher RDMs from the 2-RDM to
remove the indeterminacy of the CSE and ACSE.16,21�26,28,29

The practical solution of the ACSE by a system of differential
equations39�53 is outlined in section 2.4, and in section 2.5, we
explain recent extensions of the ACSE to treat excited states50

and arbitrary spin states.51 Several applications are discussed
briefly in the final section.

2.1. Contracted Schr€odinger equations
For a quantum N-electron system with Hamiltonian Ĥ, the

stationary-state energies, En, and wave functions, Ψn, can be

computed from the time-independent Schr€odinger equation

ĤΨn ¼ EnΨn ð1Þ
or its density-matrix formulation

Ĥ NDn ¼ En
NDn ð2Þ

where the N-particle density matrix for the nth state is given by
NDn = ΨnΨn*. The density-matrix Schr€odinger equation can be
divided into two separate Hermitian and anti-Hermitian equa-
tions:

1
2
ðĤ NDn þ NDnĤÞ ¼ En

NDn ð3Þ

1
2
ðĤ NDn � NDnĤÞ ¼ 0 ð4Þ

Integration of eqs 2, 3, and 4 over the spin and spatial coordinate
of electrons 3 to N yields the contracted Schr€odinger equation
(CSE)16�24,26�34,36

Z
Ĥ NDn d3 ... dN ¼ En

2Dn ð5Þ

as well as the Hermitian (HCSE)27,56,106 and anti-Hermitian
(ACSE)39�55 parts of the CSE:

1
2

Z
ðĤ NDn þ NDnĤÞ d3 ... dN ¼ En

2Dn ð6Þ

1
2

Z
ðĤ NDn � NDnĤÞ d3 ... dN ¼ 0 ð7Þ

The CSE was first obtained in a coordinate representation in
1976 by Cohen and Frishberg107 and Nakatsuji.105 The anti-
Hermitian part of theCSE (ACSE) was first derived byHarriman106

in 1979; later in 1979, the ACSE was obtained by Kutzelnigg,30,108

who called it the generalized Brillouin condition. The ACSE
enforces the set of hypervirial relations for all one- and two-body
operators, which were developed by Hirshfelder.109 By defini-
tion, the sum of the HCSE and the ACSE produces the CSE. If
the Hamiltonian contains at most pairwise interactions, both the
CSE and the HCSE depend on the 2-, 3-, and 4-RDMs, while the
ACSE depends only on the 2- and 3-RDMs.

In a finite basis set, the CSE, as well as the HCSE and ACSE,
can be expressed in second quantization as

ÆΨnj2Γ̂i, j
k, l ĤjΨnæ ¼ En

2Di, j
k, l ð8Þ

and

1
2
ÆΨnjf2Γ̂i, j

k, l , ĤgjΨnæ ¼ En
2Di, j

k, l ð9Þ

1
2
ÆΨnj½2Γ̂i, j

k, l , Ĥ�jΨnæ ¼ 0 ð10Þ

where the operator 2Γ̂k,l
i,j is the two-electron reduced density

operator (2-RDO)

2Γ̂
i, j
k, l ¼ a†i a

†
j alak ð11Þ

each index i, j, k, and l denotes a one-electron spin orbital that is a
product of a spatial orbital and a spin function σ equal to either
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R (+1/2) or β (�1/2), and the elements of the 2-RDM

2Di, j
k, l ¼ ÆΨnja†i a†j alakjΨnæ ð12Þ

follow from the expectation value of the 2-RDO with respect to
|Ψnæ. In second quantization, the creation operator ai† generates
an electron in the ith spin orbital, while the annihilation operator
ak destroys an electron in the kth spin orbital. For a quantum
many-electron system, the Hamiltonian is expressible as

Ĥ ¼ ∑
p, s

1Kp
s a

†
pas þ ∑

p, q, s, t

2Vp, q
s, t a

†
pa

†
qatas ð13Þ

where the one- and two-electron reduced Hamiltonian matrices
1K and 2V contain the one- and two-electron integrals, respec-
tively. It will also sometimes be useful to define the Hamiltonian
as

Ĥ ¼ ∑
p, q, s, t

2Kp, q
s, t a

†
pa

†
qatas ð14Þ

where 2K is the two-electron reduced Hamiltonian

2Kp, q
s, t ¼ 1

N � 1
1Kp

s δ
q
t þ 2Vp, q

s, t ð15Þ

From the definitions of the Hamiltonian and the 2-RDM in
eqs 14 and 12, respectively, we can readily express the energy as a
linear functional of the two-electron reduced Hamiltonian and
the 2-RDM

E ¼ ∑2Kp, q
s, t

2Dp, q
s, t ð16Þ

E ¼ Trð2K 2DÞ ð17Þ
Furthermore, by rearranging the creation and annihilation
operators according to the anticommutation relations for
fermions, we can write the CSE and the HCSE in terms of
the elements of the 2-, 3-, and 4-RDMs and the ACSE in terms
of the elements of the 2- and 3-RDMs. Explicit expressions for
these contracted equations in terms of the spin�orbital
elements of the reduced Hamiltonians and RDMs are given
elsewhere.7,17,21,30,43

2.2. Nakatsuji’s Theorem
The CSE is an important ingredient for 2-RDM methods

because it is a stationary-state condition for both ground and excited
states.21,50,105 ByNakatsuji’s theorem, if the RDMs in the CSE are
N-representable, then for energetically nondegenerate states,
both ground and excited states, there is a one-to-one mapping
between the solutions of the Schr€odinger equation and solutions
of the CSE.21,105 The above derivation clearly proves that the SE
implies the CSE. To complete the proof of Nakatsuji's theorem,
we need to prove that the CSE implies the SE. While early
work18,20 on the CSE assumed that Nakatsuji’s theorem,105

proven in 1976 for the integro-differential form of the CSE,
remains valid for the second-quantizedCSE in a finite orbital basis
set, the author first presented the following formal proof in
1998.21

The SE equation can be satisfied if and only if

ÆψjĤ2jψæ� ÆψjĤjψæ2 ¼ 0 ð18Þ
known as the dispersion condition. Multiplying both sides of the
CSE in eq 8 by the reduced Hamiltonian elements 2Kk,l

i,j and

summing over the remaining indices produces

Æψjð ∑
i, j;k, l

2Ki, j
k, l a

†
i a

†
j alakÞð ∑

p, q;s, t

2Kp, q
s, t a

†
pa

†
qatasÞjψæ

¼ Eð ∑
i, j;k, l

2Ki, j
k, l

2Di, j
k, lÞ ð19Þ

The sum on the right-hand side of the above equation is equal to
the energy E, and from eq 14, we realize that the sums on the left-
hand side are just Hamiltonian operators in the second-quantized
notation. Hence, when the 2-RDM corresponds to an N-particle
wave functionψ, eq 22 implies eq 18, and the proof of Nakatsuji’s
theorem is accomplished.

Because the Hamiltonian is defined in second quantization,
the proof of Nakatsuji’s theorem is also valid when the one-
particle basis set is incomplete. While an exact Nakatsuji-like
theorem has not been proven for the ACSE, the ACSE implies a
significant part of the CSE.50 Unlike the SE, the CSE only
requires the 2- and 4-RDMs in the given one-particle basis rather
than the full N-particle wave function. Despite their importance
as stationary-state conditions, neither the CSE nor the ACSE can
be solved for the 2-RDMwithout additional information because
they both depend on higher-particle RDMs.

2.3. Cumulant Reconstruction of RDMs
A significant advance occurred in the 1990s when it was

recognized that the indeterminacy of these equations could be
removed by reconstructing the higher RDMs as functionals of
the 2-RDM.16,19,21,22 In 1993, Colmenero, P�erez del Valle, and
Valdemoro16 introduced a set of reconstruction functionals based
on particle�hole duality, and in 1996, Nakatsuji and Yasuda19 con-
firmed these functionals by Green’s function techniques. In 1998,
Mazziotti21,22 systematized and generalized these reconstruc-
tions by developing a cumulant theory for RDMs.22,24,26,28 Cumu-
lant reconstruction of RDMs has been applied to solving both the
CSE16,19,21 and ACSE.39�55

Both the 3- and 4-RDMs can be expressed as follows:22�26,28,110

3Dp, q, s
t, u, v ¼ þ 61Dp

t ∧ 1Dq
u ∧ 1Ds

v þ 92Δp, q
t, u ∧ 1Ds

v

þ 3Δp, q, s
t, u, v ð20Þ

and

4Dp, q, s, t
u, v, y, z ¼ þ 241Dp

u ∧ 1Dq
v ∧ 1Ds

y ∧ 1Dt
z

þ 722Δp, q
u, v ∧ 1Ds

y ∧ 1Dt
z

þ 242Δp, q
u, v ∧ 2Δs, t

y, z þ 163Δp, q, s
u, v, y ∧ 1Dt

z

þ 4Δp, q, s, t
u, v, y, z ð21Þ

where the 3- and 4-RDMs are normalized, as in second quantization,
to N!/(N � 3)! and N!/(N � 4)!, 1D is the 1-RDM, and 2Δ, 3Δ,
and 4Δ are the cumulant (or connected) parts of the 2-, 3-, and
4-RDMs. Importantly, both the 1-RDM and the cumulant part of a
p-RDM scale linearly with system size r, whereas, in contrast, the p-
RDM scales as rp.7,22,23,26,29 Furthermore, the cumulant p-RDM
vanishes until the (p � 1)th order of a renormalized perturbation
theory.7,22,23,26,29 The symbol ∧ denotes the antisymmetric tensor
product known as the Grassmann (or wedge) product.21,111
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To eliminate the 3-RDM from the CSE or ACSE approxi-
mately, we can reconstruct the 3-RDM from the 2-RDM accord-
ing to its cumulant expansion22,24,26,29,28,110

3Dp, q, s
t, u, v ≈ 61Dp

t ∧ 1Dq
u ∧ 1Ds

v

þ 9ð2Dp, q
t, u � 21Dp

t ∧ 1Dq
uÞ ∧ 1Ds

v ð22Þ
where ∧ denotes the antisymmetric Grassmann (or wedge)
product.21,111 The missing term in the reconstruction, known
as the connected (or cumulant) part 3Δ of the 3-RDM, contains
information not expressible as wedge products of the 1- and
2-RDMs.22,24,26,28,29,110 Although the connected 3-RDM can be
approximated in terms of the 2-RDM, it is neglected in the
multireference formulation of the ACSE in ref 45. Solution of
the CSE also requires reconstruction of the 4-RDM, which can
be accomplished by a similar approximation of its cumulant
expansion.18�22,24,26�34,36

The cumulant reconstruction22,24,26,28 is also an essential part of the
canonical transformation (CT)method,112,113 which has been shown
to be a solution of the ACSE in the Heisenberg representation.41

Despite their theoretical connections, the ACSE andCTmethods are
practically very different with distinct fundamental variables (the
2-RDM (ACSE) versus an effective Hamiltonian (CT)), conver-
gence behaviors, results, and capabilities.41,48 In general, reconstruc-
tion is an important component of any method within contracted
Schr€odinger theory, that is, a theory using the CSE or a part of the
CSE, such as the ACSE, as a stationary-state condition.50

2.4. Solving the ACSE
In this section, we combine the ACSE and the cumulant

reconstruction of the 3-RDM from the 2-RDM from the previous
sections to solve the ACSE for the 2-RDM. Consider a sequence
of infinitesimal two-body unitary transformations of an initial
wave function Ψ(λ)

jΨðλ þ EÞæ ¼ eEŜðλÞjΨðλÞæ ð23Þ
where the transformations are ordered by a continuous time-like
variable λ. For the transformation to be unitary, the two-body
operator Ŝ, defined by

ŜðλÞ ¼ ∑
p, q, s, t

2Sp, qs, t ðλÞ2Γ̂
p, q
s, t ð24Þ

must be anti-Hermitian, Ŝ† = �Ŝ. The operator Ŝ(λ) can be
chosen to minimize the energy along the path defined by λ.

As shown in refs 39, 41, 42, and 45, the following differential
equations for the changes of the energy and its 2-RDMwith λ are
obtained from eq 23 by letting ɛ f 0:

dE
dλ

¼ ÆΨðλÞj½Ĥ, ŜðλÞ�jΨðλÞæ ð25Þ

and

d2Di, j
k, l

dλ
¼ ÆΨðλÞj½2Γ̂i, j

k, l , ŜðλÞ�jΨðλÞæ ð26Þ

Tominimize the energy along λ, we select the following elements
of the two-particle matrix 2Ss,t

p,q(λ), which minimize dE/dλ along
its gradient with respect to these elements:73

2Sp, qs, t ðλÞ ¼ � ÆΨðλÞj½Ĥ, 2Γ̂
p, q
s, t �jΨðλÞæ ð27Þ

Importantly, the right side of eq 27 is simply the negative of the
residual of the ACSE. If the residual in the ACSE vanishes, the

unitary transformations become the identity operator, and the
energy and 2-RDM cease to change with λ. Using the cumulant
reconstruction of the 3-RDM in eq 22 permits us to express these
equations approximately in terms of the 2-RDM. Hence, eqs 25,
26, and 27 collectively provide a system of differential
equations39,41,42,45 for evolving an initial 2-RDM to a final
2-RDM that solves the ACSE for stationary states. In practice,
the equations are evolved in λ until either (i) the energy or
(ii) the least-squares norm of the ACSE increases. The ACSE can
be seeded with an initial 2-RDM from either (i) a Hartree�Fock
calculation or (ii) any correlated calculation (i.e., a multi-
configuration self-consistent-field (MCSCF) calculation45).
Convergence to the ACSE’s solution is efficient in both
cases.39,41,45

Seeding the ACSE with an MCSCF 2-RDM yields a balanced
treatment of both single- and multireference correlation.45,48,50�52

Because the ACSE with reconstruction incorporates many high
orders of a renormalized perturbation theory, its energies are
significantly more accurate than those from second or third
orders of a multireference many-body perturbation theory.45,48,50,51

Furthermore, in the absence of strong correlation, the ACSE can
be compared with coupled cluster methods where it yields
energies that are between the accuracies of coupled cluster with
single and double excitations (CCSD) and coupled cluster with
single, double, and triple excitations (CCSDT).42 In addition to
its balance of moderate and strong correlation effects, the ACSE
has advantages in computational scaling. It scales like r6 where r is
the rank of the one-electron basis set, but its accuracy is between
that of CCSD and CCSDT where the latter scales as r7. More-
over, while multireference wave function methods scale exponen-
tially with the number ra of active orbitals, the ACSE only scales
quadratically, ra

2.45,48 This significant reduction in computational
cost allows the ACSE to treat larger active spaces than traditional
wave function methods.

2.5. Excited States and Arbitrary Spin States
As demonstrated in the recent extension of the ACSE to

excited states,50 even though the unitary rotations are selected in
eq 27 tominimize the energy, the system of differential equations
in eqs 25, 26, and 27 is capable of producing energy and 2-RDM
solutions of the ACSE for both ground and excited states.
Because excited states correspond to local energy minima of
the ACSE and the gradient in eq 27 leads to a local rather than
global energy minimum, an excited-state solution can be readily
obtained from a good guess for the initial 2-RDM. A guess will be
good when it is closer to the minimum of the desired solution of
the ACSE than to any other minimum. Such 2-RDM guesses can
be generated frommulticonfiguration self-consistent-field (MCSCF)
calculations. The initial MCSCF 2-RDMdirects the optimization
of the ACSE to a desired excited state because it contains important
multireference correlation effects that identify the state.

The ACSE method has also recently been extended to treat
arbitrary spin states.51 This extension was achieved through a
spin-coupling technique that for arbitrary spin states preserves
the efficient matrix blocking of singlet-state 2-RDMs. In the
approach, we couple a high-spin molecule to one or more
hydrogens at “infinite” separation to yield a composite closed-
shell system. Importantly, the noninteracting hydrogens can be
added without decreasing the point-group symmetry of the high-
spin molecule. Consider, for example, a molecule in a doublet
spin state ψn

1/2,(1/2 to which we couple an exact hydrogen wave
function at “infinity” ϕ1/2,-1/2. By standard angular momentum
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coupling techniques, we can write the composite singlet wave
function as

Ψ0, 0
n ð1 ... N þ 1Þ

¼ 1ffiffiffi
2

p ðψ1=2, þ 1=2
n ð1 ... NÞ ∧ ϕ1=2, � 1=2ðN þ 1Þ

�ψ1=2, � 1=2
n ð1 ... NÞ ∧ ϕ1=2, þ 1=2ðN þ 1ÞÞ ð28Þ

The resulting supermolecule is in a singlet state that can be
readily treated with the ACSE. This spin-coupling technique,
generalizable to arbitrary spin states,51 has been demonstrated to
yield a size extensive (i.e., separable) 2-RDM for high-spin
systems of interest.51

2.6. Applications
Applications of the ACSE to the ground state have been made

to a number of systems and reactions including (i) the electro-
cyclic ring-opening of bicyclobutane to gauche-1,3-butadiene,47

(ii) the relative energies of the cis�trans isomers of HO3
�,44 (iii)

the sigmatropic shift of hydrogen in propene and acetone
enolate,48 (iv) the study of vinylidene carbene reactions,52 and
(v) the photoexcited reaction of allyl radical to cyclopropyl
radical.55 These calculations demonstrate that the ACSE yields
a balanced description of single- and multireference (strong)
correlation effects in both the presence and absence of strong
electron correlation. In contrast, traditional wave function meth-
ods tend to be optimal in either the presence (multireference
perturbation methods) or absence (coupled-cluster methods) of
strong correlation. An equally accurate description of correlation
in both limits is extremely important in practical applications
where energy differences must be computed between molecular
species or states with significantly different degrees of electron
correlation.
2.6.1. Energy Barriers of Bicyclobutane’s Transition

States. In the ring opening of bicyclobutane to gauche-1,3-
butadiene the energy barrier for the disrotatory pathway includes
the energy of a strongly correlated biradical transition state.47 The
ACSE method enables the direct calculation of multireference
correlation energies and 2-RDMs without the fully correlated
many-electron wave function. Qualitatively, the Woodward�
Hoffmann rules indicate that the electrocyclic reaction of
bicyclobutane to form gauche-1,3-butadiene prefers the con-
rotatory pathway to the disrotatory pathway. The solution of
the ACSE in the 6-311G** basis set predicts 41.2 and 55.7 kcal/
mol reaction barriers for the conrotatory and disrotatory
pathways, respectively (Figure 1). The ACSE energy barrier
of 55 kcal/mol appears to resolve a 10 kcal/mol energy
discrepancy between coupled cluster and multireference pertur-
bation methods in the literature.47

2.6.2. Excited and Arbitrary-Spin States. Because excited
states generally contain more multireference correlation than
ground states, the ACSE method is especially applicable to
treating both the energies and properties of excited states. In
2009, the ACSEmethodology was extended to treat both excited
states50 and arbitrary spin states.51 Initial benchmark calculations
included the excited states of hydrogen fluoride where the ACSE
matched the accuracy of the computationally more expensive
multireference configuration-interaction method with single and
double excitations plus Davidson’s Q correction (MRCI+Q).50

Importantly, unlike MRCI+Q, the ACSE is size extensive, that is,
it has the correct scaling with system size. Calculations have
shown that this property becomes important in only slightly
larger molecular systems. Recently, the generalization of the
ACSE for excited states and arbitrary spin has been applied to
computing (i) the conical intersection in the triplet excited states
of methylene53 and (ii) the photochemical conversion of the allyl
radical to the cyclopropyl radical.
The conical intersection between methylene’s excited triplet

states 1 3A2 and 2 3B1 is shown in Figure 2. In each plot, the
points represent the values computed by full configuration
interaction (FCI) in the correlation-consistent polarized valence
double-ζ (cc-pVDZ) basis set. The FCI results are compared
with those from (a) multireference self-consistent field (MCSCF),
(b) second-order multireference perturbation theory (MRPT2),
and (c) the ACSE. The ACSE improves the accuracy of MCSCF
by 2 orders of magnitude and MRMP2 by 1 order of magnitude.
The average differences in the MCSCF, MRMP2, and ACSE
energies from FCI are 93.89, 12.27, and 1.51 mhartree, respec-
tively.53 Similar accuracy was obtained at the conical intersection.
The location of the intersection computed by the ACSE corro-
borates Yarkony’s results114 with a high degree of accuracy. Fur-
thermore, the ACSE produces nearly N-representable 2-RDMs
from which both one- and two-particle properties can be com-
puted without any additional calculations.
Photoexcited chemical reactions provide a critical pathway for

chemical transformation in both nature and materials.115 The
ring closing of allyl radical to cyclopropyl radical and the reverse
reaction, the ring opening of cyclopropyl radical, are prototype
reactions for electrocyclic reactions in organic chemistry. Recently,
Foley, Rothman, and the author55 applied the ACSE method to
compute the ground- and excited-state energies and 2-RDMs of
reactants, products, and transition states in the interconversion of
the allyl and cyclopropyl radicals. Results are shown in Figure 3.
We find that the conrotatory and disrotatory reaction barriers
from ground-state allyl radical to the cyclopropyl radical are large
while these barriers from excited-state allyl radical are negligible,
essentially nonexistent. Calculations of the occupation numbers
of the natural orbitals reveal strong multireference correlation in
the excited states. Comparisons were made with multireference
second- and third-order perturbation theories andmultireference
configuration interaction. While predicted energy differences do
not vary greatly between methods, the ACSE appears to improve

Figure 1. The ring-opening of bicyclobutane to gauche-1,3-butadiene
can occur by conrotatory or disrotatory pathways where the energy
barrier for the disrotatory pathway includes the energy of a strongly
correlated biradical transition state. The solution of the ACSE in the
6-311G** basis set predicts 41.2 and 55.7 kcal/mol reaction barriers for
the conrotatory and disrotatory pathways, respectively.
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these differences when they involve a strongly and a weakly
correlated radical by capturing a greater share of single-reference
correlation that increases the stability of the weakly correlated
radicals. For example, the ACSE predicts a �39.6 kcal/mol

conversion of the excited allyl radical to the ground-state
cyclopropyl radical in comparison to the �32.6 to �37.3 kcal/mol
conversions predicted by multireference methods.55

3. VARIATIONAL 2-RDM METHOD

Although the ground-state energy of any many-electron atom
or molecule can be written as a linear functional of the 2-RDM as
shown in eq 16, it cannot be variationally optimized as a
functional of the 2-RDM without explicit constraints known as
N-representability conditions to ensure that the 2-RDM repre-
sents an N-electron quantum system.7,11,116 While the idea of a
variational 2-RDM method for computing the ground-state
energy of a many-electron system arose in the 1950s in the work
of Coleman,8 Lowdin,10 and Mayer,9 efforts were stymied by the
search for suitable N-representability conditions, known as the
N-representability problem.

Progress in the late 1990s on computing the 2-RDM directly
from the approximate solution of the CSE,16,18�22 described in
section 2 led to a renewed interest in the variational calculation of
the 2-RDM. In 1998, the author21 studied reconstructing the 3-
and 4-RDMs from the 2-RDM in the CSE by restricting them to
be positive semidefinite. Shortly thereafter, Erdahl and Jin117 and
Mazziotti and Erdahl56 explored in the context of spin models
restricting all forms of the 3- and 4-RDMs to be positive semi-
definite, which they called 3- and 4-positivity conditions. In 2001,

Figure 2. The (a) MCSCF (top), (b) MRMP2 (middle), and (c) ACSE (bottom) potential energy curves for the 1 3B1, 1
3A2, and 2 3B1 states of

methylene, as functions of R, plotted against those from FCI, given by data points. Reprinted with permission from ref 53. Copyright 2010 American
Institute of Physics.

Figure 3. The ring opening of allyl radical (A) to cyclopropyl (C)
radical can occur by a disrotatory ground-state pathway or after
excitation to excited allyl (A*) radical by either a disrotatory or a
conrotatory excited-state pathway. Energy barriers in kcal/mol are
determined from solving the ACSE for the 2-RDM in the 6-311G**
basis set.
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Nakatsuji and his collaborators57 and Mazziotti58 implemented
the variational 2-RDM method with 2-positivity conditions and
some partial 3-positivity conditions for a collection of atoms and
molecules. In 2004, Percus and his collaborators63 implemen-
ted partial 3-positivity conditions, T1 and T2 conditions,

69,72,118

which had been proposed in 1978 by Erdahl,118 and Mazziotti64,65

introduced a much faster optimization algorithm that extended
the variational 2-RDMmethod to larger molecules and basis sets.
The full 3-positivity conditions were first implemented in 2006.73,74

In section 3.1, we develop the systematic hierarchy of N-
representability constraints for the 2-RDM known as the p-
positivity conditions.7 Minimizing the ground-state energy with
respect to the 2-RDMconstrained by positivity conditions requires a
special type of optimization known as semidefinite program-
ming,56�58,64,65,77,119 which we review in section 3.2. Finally, in
section 3.3, we illustrate the variational 2-RDM method with
applications to studying strong electron correlation in acene
chains, hydrogen lattices, and firefly luciferin.

3.1. Positivity Conditions
General p-particle N-representability conditions on the 2-RDM

are derivable from metric (or overlap) matrices. From the ground-
state wave function |Ψæ and a set of p-particle operators {Ĉi1,i2,...,ip},
a set of basis functions can be defined

ÆΦi1, i2, :::, ip j ¼ ÆΨjĈi1, i2, :::, ip ð29Þ
for which the metric (or overlap) matrix M with elements

M
i1;i2;:::;ip
j1;j2;:::;jp ¼ ÆΦi1;i2;:::;ip jΦj1;j2;:::;jp æ ð30Þ

¼ ÆΨjĈi1;i2;:::;ip Ĉ
†
j1;j2;:::;jp

jΨæ ð31Þ

must be positive semidefinite. We indicate that a matrix has this
property by the notation M g 0. For a p-RDM that is parame-
trized by a wave function, these vector-space restrictions are
always satisfied. More generally, however, these conditions,
known as p-positivity conditions,56,58,64,65,73,74 offer a systematic
approach for imposingN-representability conditions on an RDM
without using the wave function.
3.1.1. 2-Positivity. When p = 2, we may choose the Ĉi,j in

three distinct ways: (i) to create one particle in the jth orbital and
one particle in the ith orbital, that is, Ĉi,j = ai

†aj
†, (ii) to annihilate

one particle in the jth orbital and one particle in the ith orbital (or
create holes in each of these orbitals), Ĉi,j = aiaj, and (iii) to
annihilate one particle in the jth orbital and create one particle in
the ith orbital, that is, Ĉi,j = ai

†a,j. These three choices for the Ĉi,j

produce the following three different metric matrices for the
2-RDM:

2Di, j
k, l ¼ ÆΨja†i a†j alakjΨæ ð32Þ

2Qi, j
k, l ¼ ÆΨjaiaja†l a†k jΨæ ð33Þ

2Gi, j
k, l ¼ ÆΨja†i aja†l akjΨæ ð34Þ

which must be positive semidefinite if the 2-RDM is N-
representable.56,73,116 All three matrices contain equivalent in-
formation in the sense that rearranging the creation and annihila-
tion operators produces linear mappings between the elements
of the three matrices; particularly, the two-hole RDM, 2Q,
and the particle�hole RDM, 2G, may be written in terms of

the two-particle RDM, 2D, as follows

2Qi, j
k, l ¼ 22Ii, jk, l � 41Di

k ∧ 1Ijl þ 2Di, j
k, l ð35Þ

and

2Gi, j
k, l ¼ 1Ijl

1Di
k � 2Di, j

k, l ð36Þ
where 1I and 2I are the one- and two-particle identity matrices
and ∧ denotes the Grassmann wedge product.21 While all three
matrices are interconvertible, the nonnegativity of the eigenva-
lues of one matrix does not imply the nonnegativity of the
eigenvalues of the other matrices, and hence, the restrictions
2Q g 0 and 2G g 0 provide two important N-representability
conditions in addition to 2D g 0. These conditions physically
restrict the probability distributions for two particles, two holes, and
oneparticle andonehole to benonnegativewith respect to all unitary
transformations of the one-particle basis set. Collectively, the three
restrictions are known as the 2-positivity conditions.56,58,64,65,73

Because 2D g 0 and 2Q g 0 imply 1D g 0 and 1Q g 0 by
contraction

1Di
k ¼ 1

N � 1∑j
2Di, j

k, j ð37Þ

1Q i
k ¼ 1

r�N � 1∑j
2Q i, j

k, j ð38Þ

the 2-positivity conditions imply the 1-positivity conditions. The
r in the contraction of the two-hole RDM denotes the rank of the
one-particle basis set. In general, the p-positivity conditions
imply the q-positivity conditions for q e p. The 1-positivity
conditions from the metric matrices for the one-particle and one-
hole RDMs, 1D and 1Q, restrict the occupation numbers ni (or
eigenvalues) of the 1-RDM to lie in the interval ni ∈ [0,1].
Coleman showed this condition on the eigenvalues to be both
necessary and sufficient for theN-representability of the 1-RDM.11

3.1.2. 3-Positivity. The conditions that a 3-RDM be 3-posi-
tive follow fromwriting the operators in eq 29 as products of three
second-quantized operators.56,58,73,117 The resulting basis func-
tions lie in four vector spaces according to the number of creation
operators in the product. Basis functions between these vector
spaces are orthogonal because they are contained in Hilbert
spaces with different numbers of particles. The four metric
matrices that must be constrained to be positive semidefinite
for 3-positivity56 are given by

3Di, j, k
p, q, r ¼ ÆΨja†i a†j a†karaqapjΨæ ð39Þ

3Ei, j, kp, q, r ¼ ÆΨja†i a†j aka†r aqapjΨæ ð40Þ

3Fi, j, kp, q, r ¼ ÆΨjaiaja†kara†qa†pjΨæ ð41Þ

3Qi, j, k
p, q, r ¼ ÆΨjaiajaka†r a†qa†pjΨæ ð42Þ

Physically, because 3D is the metric (or overlap) matrix of basis
functions in which three particles have been “killed”, the condi-
tion that 3D be positive semidefinite, 3D g 0, restricts the
probability distribution for “three particles” to be nonnegative.
Because 3E is the metric matrix of basis functions in which two
particles and one hole have been “killed”, the condition 3E g 0
restricts the probability distribution for “twoparticles and one hole”



251 dx.doi.org/10.1021/cr2000493 |Chem. Rev. 2012, 112, 244–262

Chemical Reviews REVIEW

to be nonnegative. Similarly, the conditions 3F g 0 and 3Q g 0
restrict the probability distributions for “one particle and two
holes” and “three holes” to be nonnegative.
As in eqs 35 and 36 for the 2-positive metric matrices, the

3-positive metric matrices are connected by linear mappings,
which can be derived by rearranging the second-quantized
operators. For example, the mapping from 3D to 3Q may be
written with the Grassmann wedge product21,120 as

3Qi, j, k
p, q, r ¼ 63Ii, j, kp, q, r � 181Di

p ∧ 2Ij, kq, r

þ 92Di, j
p, q ∧ 1Ikr � 3Di, j, k

p, q, r ð43Þ

where 1I, 2I, and 3I are the one-, two-, and three-particle identity
matrices. Similar mappings can be derived to express 3E and 3F as
functionals of 3D. Contraction of the 3-positivity matrices in
eq 39 generates the 1- and 2-positivity metric matrices, and
hence, the 3-positivity conditions imply the 1- and 2-positivity
conditions. A 2-RDM is defined to be 3-positive if it arises from
the contraction of a 3-positive 3-RDM:

2Di, j
p, q ¼ 1

N � 2∑k
3Di, j, k

p, q, k ð44Þ

The 3-positivity conditions have been examined in variational
2-RDM calculations on spin56,56,117,121 and molecular73,74 sys-
tems where they give highly accurate energies and 2-RDMs.

3.2. Semidefinite Programming
Variational calculation of the energy with respect to the

2-RDM constrained by 2-positivity conditions requires minimiz-
ing the energy in eq 16 while restricting the 2D, 2Q, and 2G to be
not only positive semidefinite but also interrelated by the linear
mappings in eqs 35�38. This is a special optimization problem
known as a semidefinite program. The solution of a semidefinite
program is known as semidefinite programming.77,119,122,123

In the mid-1990s, a powerful family of algorithms, known as
primal-dual interior-point algorithms, was developed for solving
semidefinite programs.119 The phrase interior-point means that
the method keeps the trial primal and dual solutions on the
interior of the feasible set throughout the solution process. In
these algorithms, a good initial guess for the 2-RDM is a scalar
multiple of the two-particle identity matrix. Advantages of the
interior-point methods are (i) rapid quadratic convergence from
the identity matrix to the optimal 2-RDM for a set of positivity
conditions and (ii) a rigorous criterion in the duality gap for
convergence to the global minimum. These benefits, however,
are accompanied by large memory requirements and a significant
number of floating-point operations per iteration, specifically
O(nm3 + n2m2) where n is the number of variables and m is the
number of constraints. Withm and n proportional to the number
of elements in the 2-RDM (∼r4), the method scales approxi-
mately as r16 where r is the rank of the one-particle basis set.58,60

The variational 2-RDM method has been explored for minimal
basis sets with the primal-dual interior-point algorithm, but the
computational scaling significantly limits both the number of
active electrons and the size of the basis set.57�60,62,63

The author developed a large-scale semidefinite programming
algorithm for solving the semidefinite program in the variational
2-RDM method.64,65,73,77 The optimization challenge in the
2-RDMmethod is to constrain the metric matrices to be positive
semidefinite while the ground-state energy is minimized. The
algorithm constrains the solution matrix M to be positive

semidefinite by a matrix factorization

M ¼ RR� ð45Þ
where for the 2-positivity conditionsM contains the 2D, 2Q, and
2G matrices. Such a matrix factorization had been previously
considered in the context of 2-RDM theory by Rosina,124

Harriman,125 and the author,21 and it had been employed for
solving large-scale semidefinite programs in combinatorial opti-
mization.126 The applications in Mazziotti64,65 and Burer and
Choi127 were the first to apply the matrix factorization to semi-
definite programs with multiple diagonal blocks in the solution
matrix M. The linear constraints, including the trace, the con-
traction, and the interrelations between the metric matrices,
become quadratic in the new independent variablesR. Therefore,
the factorization in eq 45 converts the semidefinite program into
a nonlinear program where the energy must be minimized with
respect to R while nonlinear constraint equalities are enforced.

We can solve the nonlinear formulation of the semidefinite
program by the augmented Lagrange multiplier method for
constrained nonlinear optimization.64,65,77,126,128 Consider
the augmented Lagrangian function

LðRÞ ¼ EðRÞ � ∑
i
λiciðRÞ þ 1

μ∑i
ciðRÞ2 ð46Þ

where R is the matrix factor for the solution matrixM, E(R) is the
ground-state energy as a function of R, {ci(R)} is the set of
equality constraints, {λi} is the set of Lagrange multipliers, and μ
is the penalty parameter. For an appropriate set of multipliers
{λi}, the minimum of the Lagrangian function with respect to R
corresponds to the minimum of the energy E(R) subject to the
nonlinear constraints ci(R). The positive third term in the
augmented Lagrangian function, known as the quadratic penalty
function, tends to zero as the constraints are satisfied.

The cost of the algorithm is dominated by r6 floating-point
operations,64 mainly from the matrix multiplication of the block-
diagonal R matrix with itself, where r is the rank of the one-
particle basis set. Storage of the factorized 2-RDM, several copies
of its gradient, and the Lagrange multipliers scales as r4. In
comparison with the primal-dual interior-point approach, which
scales as r16 and r8 in floating-point operations and memory
storage, the first-order nonlinear algorithm for the variational
2-RDM method64,65,77 provides a significant improvement in
computational efficiency. The efficiency of the matrix factoriza-
tion has been confirmed by Canc�es, Stoltz, and Lewin,129 who
studied a dual formulation of the problem. Verstichel et al.130

have introduced a first-order interior-point algorithm, and re-
cently, the author131 has developed a boundary-point algorithm
that is shown to be at least 10�20 times faster than the efficient
matrix-factorization algorithms.

3.3. Applications
Because the N-representability conditions are independent of

a reference wave function, the variational 2-RDM method can
capture strong electron correlation effects in molecules. To
illustrate this ability, we discuss previous applications of the
variational 2-RDM method to (i) the dissociation of the N2

molecule,73 (ii) the prediction of the metal-to-insulator transi-
tion in the H64 lattice,

81 and (iii) the emergence of polyradical
character in acene chains.78

3.3.1. Dissociation of the N2 Molecule. The ground-state
energy of the nitrogen molecule as a function of bond length is
examined with 2-RDM and wave function methods, coupled
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cluster with single, double, and triple excitations (CCSDT) and
full configuration interaction (FCI), in Figure 4.73 Minimal Slater-
type orbital basis sets (STO-6G) are employed, and all valence
electrons are correlated. The variational lower-bound 3POS curve is
essentially indistinguishable from the FCI curve. The 2-RDM
method with 3-positivity (3POS) has a maximum error of
�1.4 mhartree at R = 1.7 Å. The 2-positivity (2POS) and
2-positivity plus T1T2 conditions yield maximum errors of
�23.6 and �4.6 mhartree at R = 1.7 Å. Around equilibrium,
the 3-positivity improves the energies from 2-positivity plusT1T2

and 2-positivity by 1 and 2 orders of magnitude, respectively, and
it is an order of magnitude more accurate than CCSDT.
3.3.2. Metal-to-Insulator Transition in the H64 Lattice.

For the 4 � 4 � 4 cube (Figure 5), RHF and MP2 provide
incorrect dissociation limits, and the coupled-cluster calculations
diverge for nonequilibrium interatomic distances R g 1.5 Å. In
contrast, as shown in Figure 6, the 2-RDMmethodwith 2-positivity
conditions ensures that upon dissociation the cluster energies per
atom converge to the energy of an isolated H atom in the given
basis set.81 Importantly, the dissociation of the 4 � 4 � 4 cube
would require approximately 1018 equally weighted determinants
in a conventional wave function calculation, which is a billion
times more determinants than are treatable with a standard multi-
reference self-consistent-field calculation.
The metal-to-insulator transition for the 4 � 4 � 4 cube is

shown in Figure 7.81 In the variational 2-RDM method, the
magnitude of the off-diagonal 1-RDM elements in the atomic-
orbital basis set, measured by harmonic average γ, decays as the
interatomic distance R increases, while in the RHF method, the

harmonic average γ rapidly converges to a positive limit. Note
that the aggregate measure γ decreases more gradually than the
measure 1D1n for two hydrogen atoms at diagonal vertices.
3.3.3. Polyradical Character of the Acene Chains. The

active spaces necessary to describe the π electrons in the n-acene
series where n = 2�8 (see Figure 8) become prohibitively large
for n > 4 because the dimension of the CI Hamiltonian scales
exponentially with the number of electrons. For example, even a
calculation of tetracene (4-acene) would require computing the
lowest eigenvector of a Hamiltonian with dimension ∼1.12 �
108, which already presents a formidable challenge in terms of
both storage and time for traditional CASSCF approaches. While
a CASSCF study of octacene would demand the diagonalization
of a Hamiltonian of dimension ∼1.47 � 1017, the approximate
ground-state energy and 2-RDM can be readily computed within
the framework of the variational 2-RDM method with two-
positivity conditions.
In ref 78, we studied the change in the natural-orbital occupa-

tion numbers with both chain length and basis-set size. Half of
the available π orbitals of the double-ζ basis set were included in
the active space. Figure 9 shows the natural-orbital occupation
numbers for acenes with chain lengths n ranging from two to
eight. The onset of biradical character is evident because the

Figure 4. Comparison of the 3POS and CCSDT potential energy
curves denoted by dashed lines with the FCI curve denoted by a solid
line. The variational lower-bound 3POS curve is essentially indistin-
guishable from the FCI curve. Reprinted with permission from ref 73.
Copyright 2006 American Physical Society.

Figure 5. Sketch of the 4 � 4 � 4 hydrogen cube. Reprinted with
permission from ref 81. Copyright 2010 American Institute of Physics.

Figure 6. Potential energy curve for the symmetric dissociation of the
4 � 4 � 4 hydrogen cube, reported per atom, as a function of the
distance between the closest atoms. Reprinted with permission from
ref 81. Copyright 2010 American Institute of Physics.

Figure 7. Metal-to-insulator transition in the 4� 4� 4 hydrogen cube
under the change of the distance R between closest atoms. Reprinted
with permission from ref 81. Copyright 2010 American Institute of
Physics.
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difference between the occupation numbers of the highest-occupied
and lowest-unoccupied natural orbitals decreases with increasing
chain length. The difference is as large as 1.67 for napthalene and
as small as 0.36 for octacene. Furthermore, around n = 8, we
begin to observe the emergence of polyradical character in the
chains. While the increase in basis set from STO-3G to double-ζ
substantially decreases the energy, it does not significantly
change either the occupation numbers or the trends in radical
character.
3.3.4. Conical Intersections in Dioxetanone and Firefly

Luciferin.Dioxetanone is a key moiety of the luciferin molecule
whose reactions in the firefly are responsible for its biolumines-
cence (Figures 10). Recent calculations of firefly luciferin em-
ployed four active electrons in four active orbitals to describe the
strong electron correlation in the dioxetanone moiety,132 but Liu
et al. showed that the decomposition reaction for dioxetanone
with two conical intersections on its potential energy surface133

requires an active space that is significantly larger than (4,4) to
capture the electron correlation.133 How many active orbitals
are needed to describe the strong electron correlation in the
luminescence reactions of dioxatenone and firefly luciferin?
Recently, Greenman and the author100 applied the variational

2-RDM method with 2-positivity conditions to studying the
convergence of the ground-state potential energy surface of
dioxetanone with active-space size. Calculations treated active
spaces ranging from (4,4) through (20,17). Because the 2-RDM
method scales polynomially with system size, it can treat large
(18,15) and (20,17) active spaces of dioxetanone that would be
very difficult or impossible to study with conventional CASSCF
methods. We measured the strong electron correlation along
the reaction coordinate with two RDM-based metrics, the
von Neumann entropy of the 1-RDM and the Frobenius norm

(or infinity norm) of the cumulant 2-RDM.134�136 At a point
near the first conical intersection both the von Neumann entropy
and the infinity norm showed clearly that the correlation effects are
not converged until at least the (14,12) active space. An analysis of
the elements comprising the infinity norm of the cumulant
2-RDM showed that the smaller active spaces substantially
overcorrelate the two-electron configurations (LR,Hβ) and
(HR,Lβ) while undercorrelating the configurations (LR,(H �
1)β) and ((H� 1)R,Lβ) where H and L denote the HOMO and
LUMO orbitals (Figure 11).
From the calculations with dioxetanone Greenman and the

author predicted that firefly luciferin will require an active space of 28
electrons in 25 orbitals,100 which significantly exceeds recent
(12,12) MCSCF calculations.132 The dioxetanone calculations,
in conjunction with previous calculations on acene and aryne
chains,78,80 show that the variational 2-RDM method offers a
viable approach to studying strong electron correlation in large

Figure 9. Natural orbital occupation numbers for the n-acene series
(n= 2�8). The basis set is double-ζ, and calculations are performed with
an active space that includes the 4n + 2 lowest lying πmolecular orbitals.
Reprinted with permission from ref 78. Copyright 2008 American
Institute of Physics.

Figure 8. Sketch of general acene chains of length n.

Figure 10. The chemiluminescent portion of the firefly luciferin reac-
tion is shown. First, firefly luciferin begins to decompose to oxyluciferin
and carbon dioxide. The excited state of the oxyluciferin can be accessed
through a conical intersection, and eventually light is emitted to reach
ground-state oxyluciferin. Reprinted with permission from ref 100.
Copyright 2010 American Institute of Physics.

Figure 11. An analysis of the elements comprising the infinity norm of
the cumulant 2-RDM showed that the smaller active spaces substantially
overcorrelate the two-electron configurations (LR,Hβ) and (HR,Lβ)
while undercorrelating the configurations (LR,(H � 1)β) and ((H �
1)R,Lβ) where H and L denote the HOMO and LUMO orbitals. The
H� 1, H, and L orbitals are shown in panel a, while the pair of entangled
two-electron configurations (LR,Hβ) + (HR,Lβ) and (LR,(H� 1)β) +
((H � 1)R,Lβ) are displayed in panel b. Reprinted with permission
from ref 100. Copyright 2010 American Institute of Physics.
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active spaces of molecular systems where traditional CASSCF
calculations are prohibited by cost.
3.3.5. Ground-State Nuclear Motion. The direct varia-

tional calculation of the two-particle reduced density matrix has
also been extended to study the ground-state motion of nuclei.
Here we briefly summarize three areas in which the 2-RDM
method has been applied to nuclear motion: (i) the probability
distributions of nuclei within the Born�Oppenheimer approx-
imation,38 (ii) the globalminimaof nucleiwithin the classical limit,103

and (iii) the probability distributions of nuclei and electrons beyond
the Born�Oppenheimer approximation.79

Kamarchik and the author38 developed a few-particle varia-
tional RDM theory for treating ground-state nuclear motion in
atomic and molecular clusters and potentially molecules. Two
features of the RDM method for nuclear motion that differ from
the electronic theory are the derivation and application of
generalized N-representability conditions for (i) multiple types
of particles and (ii) three- or higher-body interactions. Preliminary
applications were made to clusters of noble gases and small
molecules such as acetylene. In Figure 12, the ground-state one-
particle probability distribution is shown for He4 and He6
clusters.38 The probability distributions of the nuclei were
computed by solving a semidefinite program with the program
RRSDP.64 The quantum mechanical blueprints reveal a “blur-
ring” of the classical square and pentagonal structures. By
adjusting the mass of the particles, we can tune the clusters
anywhere between classical structures and Bose condensates. For
the first time by looking at just two helium atoms, we obtain the
quantum vibrational structure of all four or six helium atoms.Unlike
mean field theory, the RDM method is a fully correlated theory
where the N-representability conditions allow the RDM to
represent a correlated N-particle wave function. Integration of
the 2-RDM yields the one-density, which furnishes an intuitive
blueprint showing themost probable positions of allN nuclei and
the extent of the ground-state quantum motion.
In molecular science, a significant problem is the computation

of a molecule’s (or molecular cluster’s) configuration that globally
minimizes its energy. Calculating the global energy minimum,
however, is especially challenging for two reasons: (i) the expo-
nential dependence of the problem on the numberN of particles,
and (ii) the large number of localminima thatmust be distinguished
from the global minimum. Kamarchik and the author103 devel-
oped a polynomial-time algorithm for computing the global
minima of classical molecular clusters with pairwise interactions
as a function of only the two-particle reduced density function,
which expresses the probability for finding two particles in the
field of the other particles. Taking the classical limit of the

2-RDM method for nuclear probability distributions in clusters
produces a new formulation of the global optimization problem
for classical systems of particles, where combinatorial optimization
over N indistinguishable particles is replaced by a convex opti-
mization over just two particles. Importantly, while the conven-
tional combinatorial problem scales as r choose N where r is the
number of lattice points (a nonpolynomial (NP) scaling known
as NP hard), the convex reformulation can be relaxed to scale as r
choose 2 (a polynomial-time scaling).
An essential ingredient of the global-energy-minimummethod

is a new set of classical N-representability conditions that were
derived in ref 103 from the classical limit of the quantum N-
representability conditions. Like their quantum counterparts, the
classical N-representability conditions can be formulated as
semidefinite constraints onmatrices, and hence, the optimization
can be formulated as a semidefinite program that is solvable by
the RRSDP program. Application of the method to clusters of
4�12 alkali atoms reproduced the exact global minima generated
by a stochastic sampling algorithm of Wales.137 As in the quantum
limit, more than one type of atom can also be treated. Figure 13
shows an application of the method to computing the global
minima of binary atomic clusters where the atoms interact pairwise
by Morse potentials.103 The different structures arise from
varying the number of type A (blue) and type B (red) alkali
atoms. Because there exists a mapping between the global
optimization problem of molecular clusters and the cut-polytope
problems in combinatorial optimization, this work has potential
applications to many other areas of scientific study including the
max-cut problem in circuit design and spin glasses, lattice holes in
the geometry of numbers, the generalization of density functional
theory from the one density to the pair density, and the inves-
tigation of generalized Bell’s inequalities.
Lastly, Kamarchik and the author79 extended the variational

2-RDM method for electronic systems to compute ground-state
distributions of electrons and hydrogen nuclei in molecules
beyond the Born�Oppenheimer approximation. While tradi-
tional methods for nuclei rely on the construction of expensive
potential energy surfaces or other approximations, the variational
2-RDMmethod has the advantage of treating both electrons and
hydrogen nuclei as quantum-mechanical particles simultaneously.
Because these particles interact by pairwise Coulombic poten-
tials, the ground-state energy is expressible as a linear functional
of three 2-RDMs corresponding to two electrons, two hydrogens,
and one electron and one hydrogen. Because the hydrogen atoms

Figure 12. Densities of four and six helium atoms in two dimensions.
Reprinted with permission from ref 38. Copyright 2007 American
Physical Society.

Figure 13. Global minimum of binary Morse clusters located by the
2-particle reduced density matrix function with semidefinite program-
ming. The blue atoms are of type A, and the red atoms are of type B.
Reprinted with permission from ref 103. Copyright 2008 American
Physical Society.
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are considerably lighter than the other atoms in most molecules,
we treat, as in the work by Hammes-Schiffer,138 only the hydrogen
atoms and the electrons beyond the Born�Oppenheimer
approximation. Variational optimization of the ground-state energy
requires that the 2-RDMs be restricted by N-representability
conditions to represent a realistic N-particle system where N is
the total number of electrons and hydrogens. Recent progress in
electronic systems with (i) developing necessary N-represent-
ability conditions and (ii) optimizing the ground-state energy
subject to these conditions is extended to systems with two types
of particles, electrons and nuclei. The nuclear-electronic 2-RDM
method can be applied to studying macroscopic quantum pheno-
mena inmolecules with “floppy” or resonant hydrogens. Illustrative
applications were made to (i) large-scale hydrogen motion in
hydrogen-bonded molecules and protonated acetylene C2H3

+

and (ii) hydrogen resonance in malonaldehyde C3H4O2 and
ammonia NH3. Recently, Chakraborty and Hammes-Schiffer
have also cast their nuclear�electron orbital method138 in a
RDM framework.139

As an example of using the 2-RDM method to treat both
electrons and hydrogen nuclei beyond the Born�Oppenheimer
approximation, consider malonaldehyde C2H4O2, a simple mo-
lecule exhibiting a hydrogen atom resonant between two sites.
The ground state of malonaldehyde is typically characterized
within the Born�Oppenheimer approximation as one of two
asymmetric planar forms (havingCs symmetry),140 and the Lewis
dot structure in Figure 14 shows these two possible structures. In
reality, however, the true quantum-mechanical ground state is an
equal superposition (or resonance) of these two energetically
equivalent configurations. Using the nuclear�electronic 2-RDM
method, Kamarchik and the author79 computed the ground-state
nuclear probability density for the hydrogen atom, shown in
Figure 14. The 2-RDM computation predicts that the hydrogen
atom is resonant (or entangled) between the two sites with equal
probability of being at either site. Hence, the ground state of
malonaldehyde is a superposition of the two indistinguishable
tautomers with C2v symmetry, which is consistent with prior
calculations on malonaldehyde.141

3.3.6. Quantum Phase Transitions. Quantum mechanical
systems can undergo significant changes in properties with a

small change in a system parameter such as the doping ratio of a
superconductor. These dramatic changes, known as quantum
phase transitions, are signatures of the quantum world, and the
value of the parameter at which the change occurs is called the
critical point.142 In wave mechanics, the transformation at the
critical point is associated with either an actual or an avoided level
crossing of the energies from ground- and excited-state wave
functions where one or more properties, described as order
parameters, exhibit an abrupt change. In 2006, Gidofalvi and
the author72 developed a different, 2-RDM-based approach to
computing and identifying quantum phase transitions,72,102

which has been applied to investigating quantum phase transi-
tions in Lipkin72,143 and Ising102,144 spin models. Verstraete and
Cirac145 have also considered the connection between quantum
phase transitions and 2-RDMs.
At the critical point of a quantum phase transition one or more

of these expectation values displays dramatic changes. In the
language of convex sets, a change in a Hamiltonian parameter
across a critical point corresponds to a dramatic movement of the
ground-state 2-RDM along the boundary of the convex set where
the initial and final points on the boundary of the set are
distinguished by significant changes in each of the order para-
meters. In a second-order phase transition from an avoided level
crossing, the ground-state 2-RDM for all values of the critical
Hamiltonian parameter is a unique extreme point on the
boundary of the set. The signature of a second-order quantum
phase transition is rapid movement of the 2-RDM as a function of
the critical Hamiltonian parameter along the boundary of the
set.72,102

For a Lipkin model with 50 fermions, the convex sets of N-
representable 2-RDMs (solid line) and 2-positive 2-RDMs
(dotted lines) are shown in Figure 15. The boundaries of the
2-positive and N-representable sets are computed by evaluating
the expectation values Æ̂Jzæ and Æ̂J+2 + Ĵ�

2æ with respect to the
2-positive and N-representable ground-state 2-RDMs of the

Figure 14. The ground-state nuclear density for the intramolecular
hydrogen transfer in malonaldehyde (a) and a close up of the region of
interest (b). Each contour line corresponds to a factor of 10 in the
density, with the innermost line being 10�1. Reprinted with permission
from ref 79. Copyright 2009 American Physical Society.

Figure 15. The convex set of 2-positive 2-RDMs (2POS) is compared
with the convex set of N-representable 2-RDMs (FCI) for the Lipkin
model. The 2-positive set contains the N-representable set. The circles
show the movement of the 2-RDM along the boundary of the set of
2-positive 2-RDMs as a function of the interaction V. The significant
increase in the “speed” of the 2-RDM around the critical point is a
signature of the quantum phase transition. Reprinted with permission
from ref 72. Copyright 2006 American Physical Society.
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Lipkin Hamiltonians in ref 72 with ɛ = 1 and V ∈ [�200,200].
Pairs of expectation values Æ̂Jzæ and Æ̂J+2 + Ĵ�

2æ can be obtained
from an N-representable 2-RDM if and only if they lie inside the
solid curve. Similarly, pairs of expectation values can be obtained
from a 2-positive 2-RDM if and only if they lie inside the dashed
curve. Because the 2-positivity conditions are necessary but not
sufficient N-representability conditions, the convex set of 2-
positive 2-RDMs contains the set of N-representable 2-RDMs.
Plotting the convex set of 3-positive 2-RDMs in Figure 15 would
yield a curve indistinguishable from the N-representable curve.
In the thermodynamic limit, a quantum phase transition

occurs in the Lipkin model around V = 1. Circles on the dashed
curve for the 2-positive set in Figure 15 denote the position of the
2-RDMas a function of the parameterV in the LipkinHamiltonian.
Between V = 0 and V = 1.0, the position of the 2-RDM on the
boundary of the convex set does not change significantly, but
from V = 1.0 to V = 1.5, where there is a second-order quantum
phase transition, the 2-RDM markedly alters its position on the
boundary of the set. After the point V = 1.5, the derivative in the
2-RDM’s position with V decreases. Between V = 5 and V = 200
the position of the 2-RDM changes less than betweenV = 1.0 and
V = 1.5. In general, themovement of the 2-RDM in the convex set
collectively represents the changes in all of the order parameters.
Figure 16 shows the order parameter RÆ̂Jzæ and the “speed” of

the 2-RDM defined as (vB 3 vB)
1/2 where vB = (∂Æ̂Jzæ/∂V, ∂Æ̂J+2 +

Ĵ�
2æ/∂V). The peak in the 2-RDM “speed” defines the location of

the critical point. For the Lipkin model with 50 fermions, the
maximum speed occurs at V = 1.14. As N f ∞, calculations
show, the peak approaches the location of the critical point in the
thermodynamic limit for the model. In the N f ∞ limit, the
derivative of the 2-RDM “speed” becomes discontinuous, which
is consistent with a second-order phase transition. Although
Gidofalvi and the author72 illustrate RDMmechanics for quantum
phase transitions with the Lipkin model, the concept of 2-RDM
“speed” is generally applicable to quantum systems with an
arbitrary number of degrees of freedom. For a 2-RDM with n
degrees of freedom, the velocity vector generalizes to an n-
component vector where each component is the derivative of a

degree of freedom with respect to a Hamiltonian parameter like
V. Ising102 and Hubbard70 models have also been treated.

4. PARAMETRIC 2-RDM METHOD

Both the variational 2-RDM method in section 3 and the
contracted Schr€odinger methods in section 2 have the ability to
capture strong electron correlation that is especially difficult for
traditional wave function methods. However, it would also be
useful to have a 2-RDM-based method that is designed for
treating moderate electron correlation with a combination of
speed and accuracy that exceeds that of conventional wave
function-based methods. In this section, we develop a parametric
variational 2-RDMmethod83�91 in which the calculations can be
performed at the speed of configuration interaction with single
and double excitations (CISD) with an accuracy approaching
that of the more expensive coupled cluster methods (CCSDT)
where single, double, and triple excitations are included.
Although we could derive the family of parametric 2-RDM
methods starting from a model wave function,83 we derive them
here from contractions of the cumulant reconstructions in
section 2,91 which provides a rigorously size extensive theory
based on the properties of cumulant RDMs. Piris and his co-
workers146,147 have introduced an approach to natural-orbital
functional theory that can also be viewed as a type of parametric
2-RDM method.

4.1. Parametrization of the 2-RDM
The 2-RDM can be expressed in terms of the one-particle

reduced density matrix (1-RDM or 1D) and a connected part
that cannot be expressed as a Grassmann (wedge) product
of the 1-RDM, known as the cumulant (or connected)
2-RDM7,22�26,28,110,148

2Dpq
st ¼ 21Ds

p ∧ 1Dq
t þ 2Δpq

st ð47Þ
Like the 2-RDM, the 1-RDM can be divided into a diagonal
mean-field matrix and a correlated matrix that connects
multiple determinants

1Dp
q ¼ ð1DoÞpq þ 1Δp

q ð48Þ
Furthermore, both of the correlated parts of the 1- and
2-RDMs can be decomposed into two Hermitian matrices

2Δ ¼ 2T þ 2R ð49Þ

1Δ ¼ 1T þ 1R ð50Þ
where 2T is the first-order part of 2Δ, 1T is the second-order
part of 1Δ (the first-order part of 1Δ vanishes), and 2R and 1R
contain higher-order corrections within a renormalized per-
turbation theory. We can derive part of the 2R and 1R
remainder matrices in terms of the 2T and 1T.91 Because
the single excitation coefficients (1T) can be made zero by
performing orbital rotations to obtain Brueckner-like orbitals,149 we
begin by considering only the 2T matrices.

As shown in ref 91, using the cumulant expansions for the 3-
and 4-RDMs7,22�26,110,148 in section 2 and their contraction
relations,7,28 we can obtain the following parametrizations of
the cumulant (connected) parts of the 2-RDMs:

2Δij
kl ¼ þ ∑

a < b

2Tab
ij

2Tab
kl þ Oðλ4Þ ð51Þ

Figure 16. Both the order parameter, RÆ̂Jzæ, and the “speed” of the
2-RDM,measuring the movement of the 2-RDMon the boundary of the
convex set of 2-positive 2-RDMs, show significant changes around the
critical point V ≈ 1 of the phase transition. Reprinted with permission
from ref 72. Copyright 2006 American Physical Society.
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2Δia
jb ¼ � ∑

kc

2Tac
jk
2Tbc

ik þ Oðλ4Þ ð52Þ

2Δab
cd ¼ þ ∑

i < j

2Tab
ij

2Tcd
ij þ Oðλ4Þ ð53Þ

2Δab
ij ¼ þ 2Tab

ij þ Oðλ3Þ ð54Þ
and the connected part of the 1-RDM:

1Δi
j ¼ � ∑

k, a<b

2Tab
ik

2Tab
jk þ Oðλ4Þ ð55Þ

1Δa
b ¼ þ ∑

c, i<j

2Tij
ac
2Tbc

ij þ Oðλ4Þ ð56Þ

where {i,j,k,l} and {a,b,c,d} are the indices for the occupied
and virtual orbitals, respectively. These definitions of the 2-
RDM elements involve only connected quantities and there-
fore yield a size extensive 2-RDM. However, the 2-RDM is not
necessarily N-representable. While derived without the wave
function, this parametrization of the 2-RDM is essentially
equivalent to the coupled electron pair approximation, known
as CEPA0. As in ref 91, it can be readily extended to include
single excitations.

4.2. N-Representability of the 2-RDM
The most important N-representability conditions are the

2-positivity conditions. The 2-positivity conditions imply N-
representability conditions known as the Cauchy�Schwarz
inequalities. From nonnegativity of 2D and 2Q, we have

ð2Dij
abÞ2 e 2Dij

ij
2Dab

ab ð57Þ

ð2Qij
abÞ2 e 2Qij

ij
2Qab

ab ð58Þ

These inequalities become equalities in two cases: (i) when
correlation is absent, both sides of the inequalities trivially
vanish, and (ii) when the number of particles (holes) equals
two, eq 57 (eq 58) becomes an equality. Equation 57 (eq 58)
is an inequality mainly due to unconnected terms (terms scaling as
Npwhere pg 2) that appear on the right side when the number of
particles (holes) is greater than two.

Substituting the definitions of the 2-RDM elements into these
inequalities and equating the connected parts on each side gives
parametrizations of the cumulant 2-RDM elements 2Δij

ab that
improve the 2-RDM’s N-representability.83,91 Taking different
averages of the six size extensive equations yields a family of
2-RDM parametrizations including those introduced by Kollmar84,85

and Mazziotti.83,91 The general family of 2-RDM parametriza-
tions can be expressed as

2Δab
ij ¼ 2Tab

ij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

4∑cdkl
f abcdijkl j2Tcd

kl j2
s

ð59Þ

where the values of fijkl
abcd, known as the topological factor, for

different parametrizations are given in Table 1. Because a topo-
logical factor fabcd

ijkl only depends on the number of indices shared
by 2Tij

ab and 2Tkl
cd in eq 59, its possible values can be divided into

nine classes, labeled by no/nv, where no is the number of

occupied orbitals shared by {ij} and {kl} and nv is the number
of virtual orbitals shared by {ab} and {cd}. For the energy
functional to be size extensive, the topological factor must
vanish for the class no/nv = 0/0. Table 1 defines the elements of
the topological factors for CID and CEPA as well as those
corresponding to the parametrizations of Kollmar (K) and
Mazziotti (M). The derivation here can be extended to the
case where non-zero single-excitation coefficients contribute to
the 1- and 2-RDM elements.91

4.3. Applications
To illustrate the parametric 2-RDM methods, we examine

correlation energies of several molecules at equilibrium,83,91 the
dissociation of hydrogen fluoride,91 and applications to the iso-
merization of nitrosomethane90 and the conversion of oxywater
to hydrogen peroxide.
4.3.1. Correlation Energies at Equilibrium Geometries.

Correlation energies from parametric 2-RDMmethods as well as
traditional wave function methods are reported in Table 2 for
several molecules in the polarized quadruple-ζ (cc-pVQZ) basis
set.91,150 Molecules NH3 and HCN are given in the correlation-
consistent polarized triple-ζ (cc-pVTZ) basis set.150 The K and
M methods recover much more correlation energy than CISD,
which is not size extensive. Furthermore, the M method

Table 1. Elements of the Topological Factors for CID,
CEPA, and the D, Q, K, and M Parametric 2-RDM Methods
Defined.a

topological factors, f abcd
ijkl (or fno/nv)

2-RDM methods 0/0 1/0 2/0 0/1 0/2 1/1 2/1 1/2 2/2

CID 1 1 1 1 1 1 1 1 1

CEPA 0 0 0 0 0 0 0 0 0

D 0 1 1 0 0 1 1 1 1

Q 0 0 0 1 1 1 1 1 1

K 0 1/2 1 1/2 1 3/4 1 1 1

M 0 0 1 0 1 1 1 1 1
aReprinted with permission from ref 83. Copyright 2008 American
Physical Society.

Table 2. Correlation Energies from Parametric 2-RDM
Methods as well as Traditional Wavefunction Methods for
Molecules in the cc-pVQZ Basis Set except for NH3 and HCN
in the cc-pVTZ Basis Seta

correlation energy

wave function methods 2-RDM methods

molecules HF energy CCSD CCSD(T) CISD K M

H2O �76.0648 �0.2860 �0.2950 �0.2744�0.2868�0.2904

CH2 �38.8947 �0.1712 �0.1765 �0.1647�0.1729�0.1761

N2 �108.9911 �0.3931 �0.4133 �0.3657�0.3957�0.4032

CO �112.7888 �0.3805 �0.3990 �0.3556�0.3837�0.3906

NH3 �56.2179 �0.2476 �0.2553 �0.2368�0.2487�0.2522

HCN �92.9081 �0.3492 �0.3671 �0.3237�0.3518�0.3586
aThe M 2-RDM methods improve significantly upon CCSD. All
energies are given in hartrees.
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improves significantly upon CCSD with energies that are closer
to those from CCSD(T). The K method improves slightly upon
CCSD. The 2-RDMs from the parametric methods are nearlyN-
representable; for example, with the Mmethod for N2 the lowest
eigenvalues of 2D, 2Q, and 2G, � 5.0 � 10�4, � 3.0 � 10�4, and
�4.1 � 10�4, are 3�4 orders of magnitude smaller than the
largest eigenvalues.
4.3.2. Dissociation of the HF Molecule. In Figure 17, the

dissociation curve for hydrogen fluoride is presented in a cc-
pVQZ basis set.91,150 Because FCI calculations are not available
for such a large basis set, we compare the energy errors from the
K, M, and M2 parametric 2-RDM methods and the CCSD and
CCSD(T) coupled-cluster methods relative to the energies from
the completely renormalized coupled cluster method with per-
turbative triple excitations [CR-CC(2,3)].151 Both CCSD(T)
and CR-CC(2,3), scaling approximately as r7, contain a pertur-
bative treatment of triple excitations. For hydrogen fluoride at
2.8Å, theCCSD,CCSD(T), K, andMmethods yield energy errors
of 27.5, �34.6, 15.3, and 2.6 mhartree, respectively. Furthermore,
the NPEs from CCSD, CCSD(T), K, and M are 19.1,�33.4, 7.8,
and 2.1 mhartree. The M functional performs better in this basis
set than in the smaller 6-311G** basis set. Figure 17 displays the
potential energy curves for hydrogen fluoride from the K, M,
CCSD, CCSD(T), and CR-CC(2,3) methods. The energy results
of the M functional are nearly indistinguishable from those of the
computationally more expensive CR-CC(2,3)
4.3.3. Isomerization of Nitrosomethane. The parametric

2-RDMmethod with the K parametrization was recently applied
to the isomerization of nitrosomethane to trans-formaldoxime,
which can occur by (i) a single 1,3-hydrogen shift or (ii) two
successive 1,2-hydrogen shifts.90 The potential energy surface
from the 2-RDM method with the K functional in the aug-cc-
pVTZ basis set is shown in Figure 18 where we present energies
in kcal/mol of the stationary points relative to nitrosomethane.
Because the parametric 2-RDM method minimizes the energy
with respect to its parameters, the first derivative of the ground-
state energy with respect to an arbitrary nuclear coordinate
depends only on the derivatives of the one- and two-electron integrals.
Hence, geometry optimization can be efficiently implemented
with one evaluation of the parametric 2-RDM method for each
gradient update of the molecular geometry as discussed in ref 88.
The solid line follows the channel describing successive 1,2-
hydrogen shifts, while the dashed line follows a single 1,3-
hydrogen shift to cis-formaldoxime followed by a rotation with

a barrier of about 3 kcal/mol to trans-formaldoxime, which is
globally the lowest energy species on the surface. We note that
the barrier of the 1,3-shift is slightly higher than the barrier of the
first 1,2-shift, with heights relative to nitrosomethane of 65.0 and
55.2 kcal/mol, respectively, as predicted by the 2-RDM method.
4.3.4. Kinetic Stability of Oxywater. Recently, the para-

metric 2-RDM method with the K and M parametrization was
applied to computing the activation energy for the conversion of
oxywater to hydrogen peroxide. The potential energy curve for
the reaction of oxywater (OW) to hydrogen peroxide (HP) is
shown in Figure 19 in the extrapolated basis-set limit (EBSL).
(Also displayed is the dissociation of hydrogen peroxide into two
hydroxyl radicals.) In the EBSL, the CCSD, CR-CC(T), and
CCSD(T) methods predict the energy of the transition state
(TS) relative to OW to be 6.6, 5.1, and 4.5 kcal/mol, respectively,
while the K and M parametric 2-RDM methods predict activa-
tion energies of 5.0 and 2.2 kcal/mol, respectively. While the
activation energy of 3.6 kcal/mol from CCSD(T) in the aug-cc-
pVTZ basis set agrees with the barriers of 3.3 and 3.9 kcal/mol
obtained previously in similar triple-ζ basis sets,152,153 the
activation energy from CCSD(T) in the aug-cc-pVQZ basis
set, containing twice as many basis functions, is 4.0 kcal/mol,
which leads to the 4.5 kcal/mol in the extrapolated limit.
Importantly, the M parametric 2-RDM method predicts a lower
barrier of 2.2 kcal/mol in the basis-set limit. TheM functional has
been shown to be especially effective in treating the multi-
reference electron correlation in hydrogen abstraction and non-
equilibrium geometries such as transition states. Hence, it is
reasonable that the energy from the M functional lies between
the CCSD(T) energy and earlier CASPT2 energies, which
predicted small or nonexistent barriers.153

5. FUTURE DIRECTIONS

The collection of 2-RDM methods offers a new paradigm for
the computation of electron correlation in quantum systems.7

While the wave function scales exponentially in the number N of
electrons, the 2-RDM scales polynomially in N. Consequently,
for many-electron quantum systems, the 2-RDM theory offers a
significant reduction in computational cost even in the presence
of strong electron correlation. The 2-RDMhas long been employed
as a tool for analysis of quantum information, but as discussed in the
Introduction, efforts to compute the 2-RDMdirectly were hindered
by the N-representability problem, that is, the 2-RDM must be
constrained to correspond to an N-electron system.11

Recent advances7 have enabled the direct computation of the
2-RDM without the many-electron wave function by the meth-
ods discussed in this review: (i) the constrained and parametric
variational 2-RDM methods and (ii) the solution of the con-
tracted Schr€odinger equation or its anti-Hermitian part. Impor-
tantly, as seen with the acene chains78 and the hydrogen
lattices,81 these 2-RDM approaches permit the treatment of
strong electron correlation in systems that are too large to treat
with traditional electronic structure methods. The variational
2-RDM method is applicable to a broader range of molecules
including systems lacking a clear ordering of orbitals by space or
energy, which can be challenging for density-matrix renormaliza-
tion group.154 The 2-RDM-based methods have been applied to
study: (i) chemical reactions and materials,47�53,78,80,81,89,90 (ii)
quantum phase transitions,101,102 (iii) motions of electrons and
nuclei,79,38,103 (iv) molecular conductivity,155,156 and (v) high-
temperature superconductivity.157

Figure 17. The potential energy curves for hydrogen fluoride in the cc-
pVQZ basis set from the K, M, CCSD, CCSD(T), and CR-CC(2,3)
methods. The energy results of the M functional are nearly indistin-
guishable from those of the computationally more expensive CR-CC-
(2,3). The length of the H�F bond is given in angstroms (Å). Reprinted
with permission from ref 91. Copyright 2010 American Physical Society.
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While significant progress has been made, there remain
many important opportunities for further advancements in
theory and applications. A sampling of future extensions
of recent work might include: (i) improvements in the
computational efficiency of the first-order semidefinite-
programming algorithms,64,65,77 (ii) enhancements of exist-
ing linear-scaling parametric 2-RDM methods89 for the
better treatment of medium-to-large molecular systems, and
(iii) generalizations of existing nonequilibrium steady-state
ACSE methods155,156 to treat electron correlation in molecular

conductors explicitly. It is hoped that the present review may
serve as a starting point for these and other new developments
in 2-RDM mechanics that will further enhance our ability
to study and understand quantum molecular systems and
processes.
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Figure 18. Critical points on the potential energy surface for the isomerization of nitrosomethane to trans-formaldoxime as computed by the 2-RDM
method in the aug-cc-pVTZ basis set. The dashed line represents a 1,3-hydrogen shift; the solid line represents successive 1,2-shifts. The figure shows
that the 1,2-shift is energetically more favorable than the 1,3-shift by about 10 kcal/mol. Reprinted with permission from ref 90. Copyright 2010
American Institute of Physics.

Figure 19. Reaction and activation energies for the conversion of hydrogen peroxide (HP) to (i) oxywater (OX) and (ii) two hydroxyl radicals (HR) are
shown schematically from theM parametric 2-RDMmethod in the extrapolated basis-set limit. TheM activation energy of 2.2 kcal/mol fromOX toHP
is smaller than the energies from coupled cluster methods and larger than the energy from complete active-space second-order perturbation theory.
Reprinted with permission from ref 99. Copyright 2011 American Institute of Physics.
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